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LETTER TO THE EDITOR 

ExtremaI segments in random sequences 
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tschool of Physics and Astronomy, TeJ Aviv University, Tel Aviv 69 978, Israel 
$ D e m e n t  of Physics, Massachusetts Institute of TechnolOgy, Cambridge, MA 02139, USA 

.,. 

Received 30 August 1994 

Abstract. We investigate the probability for ule largest segment with total displacement Q 
in an N-step wndom walk to have length L. Using analytical, exact e n u m d o n ,  and Monte 
Carlo methods, we reveal the complex structure of the probability distribution in the w e - N  
limit. In particdar, the size of the longest loop has a distdbution with a square-root singularity 
at e 5 LJN = 1, an essential singularily at 8 =0, and a discontinuaus derivative at t = $. 

Investigation of the ground states of randomly charged polymers [l] suggests that in order 
to take maximal advantage of condensation energy and to diminish the effects of long- 
range repulsion of the excess charges, the polymer will select a necklacelie configuration, 
consisting of a few large, almost neutral globules,,coimected by narrow chains. Tn general 
this presents a complicated energy minimization problem., Some aspects of the solution 
can be determined by asking a simpler question: for a given random sequence (RQ of N 
charges, what is the length L of the Iongest segment with total charge Q? Altemativey, 
one can think of a onedimensional random walk (RW) in which the longest segment with an 
end-to-end distance Q is to be found. The problem resembles certain classical Rw problems 
121, such as the problem of first and last arrival at a given point, or the special case of the 
last return to the starting point of the Rw. However, the s e k h  for the longest segment of the 
Rw, among all possible starting points, creates a more complicated problem. We combine 
Monte Carlo (MC) and exact enumeration studies,. with some e p c t  qalytical results in 
certain simple Sits, to demonstrate some remarkable propehes of the distribution of the 
maximal-length segments. 

A RS is defined as a sequence of N charges (4,) (i = 1,. . . , N ;  qi = &l), which is 
picked from the set of all such sequences with equal probability. (Since there are 2N such 
sequences, the probability of picking a particular sequence is 2".) Figure 1 depicts an 
example of the accumulated charge Si = xi=, qj for a RS (So = 0). Every segment of 
the sequence between, say, steps i and j ,  has a certain charge Q = Sj - Si. Every such 
segment will be called~a Q-segment. For a particular RS, consider the set of all Q-segments 
for a fixed value of Q. Our 'task is to find the length L of the lag& segments among 
these. Figure 1 shows the longest 0-segments and 'the longest &segments, in a RS with 
N = 24. Clearly, the longest Q-segment does not have to be unique, and if there is at least 
one Q-segment in the sequence, 0 < L < N. Let f,&, Q) denote the probability that the 
longest Q-segment in a randomly chosen sequence of charges has length L. Note that 
for IQ1 > 0, the set of Q-segments in a &.en sequence may be empty: For example, the 
sequence shown in figure 1 has no 8-segments. nus,  PN(L,  Q) < 1 for IQ1 > 0. 
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Most properties of RSs have simple continuum limits. For example, the probability that 
an N element RS has overall charge Qo (for even N + Qo) is 

~~ 

wN(QO) = 2-N [(N - Qo)/2]![(N N! + Qo)/2]! NZm E e x p ( - Q ; P - N ) .  (1) 

Similarly, we expect PN(L,  Q) to approach a simple form when N, L ,  Q -+ CO, while 
the reduced length e = L/N and the reduced charge q = Q/fi are kept constant. 
In this (continuum) limit it is more convenient to work with the probability density 
p(L, 4 )  = f N  [J"(L,  Q) + P N ( L  + 1, Q)]. (At most one of the two probabilities is 
non-zero, since PN = 0 for odd L + Q.) In certain cases, I'N can be calculated 
exactly, especially for very small values of L and N - L,  and for arbitrary Q. For 
example, PN(L = N,  Q) = WN(Q) follows from the definitions of P and W (the 
longest segment is the whole sequence itselo, and a detailed analysis of all cases [3] 
gives PN(L = N - 2, Q) = 4 [ W N ~ ( Q  + 2) + ZWN-~(Q)  + WN-& - 2)]. Similarly, 
one can find expressions for very small L [3]. However, we were unable to find a general 
expression for arbitrary N, L and Q. We performed exact enumeration studies of J"(L, 0) 
for N < 36. Results for few values,, of N ace shown in figure 2(a). The results converge 
extremely quickly to the continuum distribution p ( l ,  0). The full curve in the same figure 
depicts the results of a MC evaluation of the probability density from lo8 randomly selected 
sequences of length N = 1000. 

The probabiIity density p(f, 0) shown in figure Z(u) has several remarkable properties: 
(i) MC results show that p at e = f is very close to unity (1.004 k 0.006). At that point 
the slope of the curve changes by an order of magnitude. (ii) For t -+ 0, the function 
exhibits an essential singularity of the form - l-2exp(-B/L), where B Fz: 1.7. (iii) For 
e --f 1, the function diverges as ( 1  -l)-l)z. Qualitatively, this behaviour can be understood 
as follows. The size of the longest 0-segment strongly depends on the charge Qo = SN 
of the entire chain: when Qo cx 0, the longest Qsegment typically has L = N, while 
for very large Qo, the longest 0-segment must be short. The definition of p ( 8 , O )  involves 
averaging over all R s ~ ,  and thus averaging over all QO with their proper (Gaussian) weights. 
For simplicity, let us assume that the lengm L of the longest ~O-segment depends only on 
Qo. Then, for Qo << we cah. relate e = 1 - aQ;/N, where a is of order unity. 'On 
the other hand, for Qo >> fi, the length of the longest @segment will be of order of a 
scale at which the random excursion of the Rw becomes comparable to the drift produced 
by Qo, i.e. when = LQo/N, and therefore L = N/Q& By applying the relation 
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Figure 2. ( a )  Probability density of 0-segmene as a function of reduced length e .  Circles. 
squares, and triangles depict the eract enumeration mule for N = 8, 16 and 32, respectively. 
The full curve shows mul t s  of MC simulations (see text). (b)  Probability density of Q-segments 
as a function of reduced charge q and reduced length e. ?%e results have been obtained from 
MC simulations (see ten). 

p(e,O) = (N/2)W~(Qo)ldQo/del in both limits, we correctly reproduce the square-root 
divergence for e -+ 1, and the exp(constant/t) singularity for .! --t 0. (The leading pre- 
exponential power is not reproduced correctly in the latter case. A more involved argument 
131 also reproduces this power correctly.) It is interesting to note that, by matching the 
asymptotic form of p ( e ,  0) near e = 1 with P&, 0) for L = N - 2, we reproduce almost 
the exact value of the prefactor, i.e. the discrete distribution approaches its asymptotic 
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(continuum) form within a few steps of the extreme L = N .  
Figure 2(b) depicts the full probability density p ( l ,  q), obtained from a Mc evaluation of 

IO' sequences of length N = 1024. This figure demonstrates further peculiarities of p( l ,  4): 
for fixed e, the q-dependence of p is qualitatively different for e > 4 and e c 4. In the 
former case, the distribution has a single peak at q = 0, and the areas At  = J:: dq p( l ,  q)  
under fixed4 sections have the form constant/-. In the latter case, however, we see 
two peaks, and A8 is approximately linear in 

An interesting and po&ntially useful integral relation exists between the probabilities 
PN(L, a). By definition, there are ~ " P N ( L ,  Q) sequences of length N in which the longest 
Q-segment has length L. For L 2 .N/2 ,  we can construct all such sequences as follows. 
First, we take all sequences of length 2(N - L) whose longest Q'-segments are of length 
N-L, i.e., exactly halftheirtotallength. By definition, there are 2 2 ( N - L ) P 2 ( ~ - ~ > ( N - L ,  Q') 
of these. Next, we consider all sequences of length 2L - N and total charge Q - Q .  There 
are ZZL-"W&-#(Q - Q') such sequences. It is straightforward to show that inserting any 
chain from the second'group into any chain from the first group at its midpoint, and repeating 
this process for all possible values of Q', reproduces all of the desired sequences, without 
constructing the same sequence more than once. The necessary condition, however, is that 
L > N / 2 ,  so that the longest Q-segment always includes the midpoint of the sequence. In 
the continuum l i t ,  this relation can be expressed as 

for.O.15 < l c 0.5. 

where the reduced variable q' = Q'/ Jm, and the Gaussian term in the integrand 
EpESents the continuum limit of WZL-N(Q - Q'). Equation (2) gives the probabilities for 
any e 2 4 in terms of their value at e = 5, and reduces to identity in the e + 1 2 limit. By 
integrating both sides of (2) over q. we find a relation between the areas Ai ,  for e > 4: 

which confirms the observation from the Mc data that for e t $, At simply increases as 
I/-. In  the e -+ 1 l i t ,  the variable q' disappears from the exponent in (2). and the 
relation reduces to 

9 relation both confirms our contention that p ( t ,  0) has a square-root divergence 
A / J m ,  with A = t A 1 / 2 ,  and demonstrates that the fixed4 sections of the surface 
in figure 2(b) approach a pure Gaussian shape when e --f 1 as expected, since p behaves 
like W in this limit. In addition to the MC study, we performed an exact enumeration study 
to determine A for sequences with N < 30, and found that it extrapolates to the value 
1.011 j, 0.001, in perfect agreement with the MC result: definitely larger than unity, but 
surprisingly close to it. 

We did not find analogous integd relations for e c i. Here, the situation is complicated 
by the fact that, in a given sequence, there may be several longest Q-segments that are 
disjoint. The q-dependence of p(t, q)  for small values of e has a minimum at q = 0. The 
minimum disappears as e increases, at e = i. Further analysis is necessary to understand 
the behaviour of p( t ,  q)  in this region. 
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In conclusion, we have demonstrated that the probability density p ( l . 4 )  has some 
peculiar and unexpected properties and very rich behaviour, despite the apparent simplicity 
of its formulation, and its similarity to classical RW problems. More +dysis is needed to 
fully understand various properties of the exbemal segments in a RS. 

We thank M Kardar for helpful discussions. This work was supported by the US-Israel BSF 
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